I'm trying to figure out how an ALS model can predict values for new users in between it being updated by a batch process. In my search, I came across this stackoverflow answer. I've copied the answer below for the reader's convenience:
You can get predictions for new users using the trained model (without updating it):
To get predictions for a user in the model, you use its latent representation (vector u of size f (number of factors)), which is multiplied by the product latent factor matrix (matrix made of the latent representations of all products, a bunch of vectors of size f) and gives you a score for each product. For new users, the problem is that you don't have access to their latent representation (you only have the full representation of size M (number of different products), but what you can do is use a similarity function to compute a similar latent representation for this new user by multiplying it by the transpose of the product matrix.
i.e. if you user latent matrix is u and your product latent matrix is v, for user i in the model, you get scores by doing: u_i * v for a new user, you don't have a latent representation, so take the full representation full_u and do: full_u * v^t * v This will approximate the latent factors for the new users and should give reasonable recommendations (if the model already gives reasonable recommendations for existing users)
To answer the question of training, this allows you to compute predictions for new users without having to do the heavy computation of the model which you can now do only once in a while. So you have you batch processing at night and can still make prediction for new user during the day.
Note: MLLIB gives you access to the matrix u and v
The quoted text above is an excellent answer, however, I'm struggling to understand how to programmatically implement this solution. For example, the matrix u and v can be obtained with:
# pyspark example
# ommitted for brevity ... loading movielens 1M ratings
model = ALS.train(ratings, rank, numIterations, lambdaParam)
matrix_u = model.userFeatures()
print(matrix_u.take(2)) # take a look at the dataset
This returns:
[
(2, array('d', [0.26341307163238525, 0.1650490164756775, 0.118405282497406, -0.5976635217666626, -0.3913084864616394, -0.1379186064004898, -0.3866392970085144, -0.1768060326576233, -0.38342711329460144, 0.48550787568092346, -0.18867433071136475, -0.02757863700389862, 0.1410026103258133, 0.11498363316059113, 0.03958914801478386, 0.034536730498075485, 0.08427099883556366, 0.46969038248062134, -0.8230801224708557, -0.15124185383319855, 0.2566414773464203, 0.04326820373535156, 0.19077207148075104, 0.025207923725247383, -0.02030213735997677, 0.1696728765964508, 0.5714617967605591, -0.03885050490498543, -0.09797532111406326, 0.29186877608299255, -0.12768596410751343, -0.1582849770784378, 0.01933656632900238, -0.09131495654582977, 0.26577943563461304, -0.4543033838272095, -0.11789630353450775, 0.05775507912039757, 0.2891307771205902, -0.2147761881351471, -0.011787488125264645, 0.49508437514305115, 0.5610293745994568, 0.228189617395401, 0.624510645866394, -0.009683617390692234, -0.050237834453582764, -0.07940001785755157, 0.4686132073402405, -0.02288617007434368])),
(4, array('d', [-0.001666820957325399, -0.12487432360649109, 0.1252429485321045, -0.794727087020874, -0.3804478347301483, -0.04577340930700302, -0.42346617579460144, -0.27448347210884094, -0.25846347212791443, 0.5107921957969666, 0.04229479655623436, -0.10212298482656479, -0.13407345116138458, -0.2059325873851776, 0.12777331471443176, -0.318756639957428, 0.129398375749588, 0.4351944327354431, -0.9031049013137817, -0.29211774468421936, -0.02933369390666485, 0.023618215695023537, 0.10542935132980347, -0.22032295167446136, -0.1861676126718521, 0.13154461979866028, 0.6130356192588806, -0.10089754313230515, 0.13624103367328644, 0.22037173807621002, -0.2966669499874115, -0.34058427810668945, 0.37738317251205444, -0.3755438029766083, -0.2408779263496399, -0.35355791449546814, 0.05752146989107132, -0.15478627383708954, 0.3418906629085541, -0.6939512491226196, 0.4279302656650543, 0.4875738322734833, 0.5659542083740234, 0.1479463279247284, 0.5280753970146179, -0.24357643723487854, 0.14329688251018524, -0.2137598991394043, 0.011986476369202137, -0.015219110995531082]))
]
I can also do similar to get the v matrix:
matrix_v = model.productFeatures()
print(matrix_v.take(2)) # take a look at the dataset
This results in:
[
(2, array('d', [0.019985994324088097, 0.0673416256904602, -0.05697149783372879, -0.5434763431549072, -0.40705952048301697, -0.18632276356220245, -0.30776089429855347, -0.13178342580795288, -0.27466219663619995, 0.4183739423751831, -0.24422742426395416, -0.24130797386169434, 0.24116989970207214, 0.06833088397979736, -0.01750543899834156, 0.03404173627495766, 0.04333991929888725, 0.3577033281326294, -0.7044714689254761, 0.1438472419977188, 0.06652364134788513, -0.029888223856687546, -0.16717877984046936, 0.1027146726846695, -0.12836599349975586, 0.10197233408689499, 0.5053384900093079, 0.019304445013403893, -0.21254844963550568, 0.2705852687358856, -0.04169371724128723, -0.24098040163516998, -0.0683765709400177, -0.09532768279314041, 0.1006036177277565, -0.08682398498058319, -0.13584329187870026, -0.001340558985248208, 0.20587041974067688, -0.14007550477981567, -0.1831497997045517, 0.5021498203277588, 0.3049483597278595, 0.11236990243196487, 0.15783801674842834, -0.044139936566352844, -0.14372406899929047, 0.058535050600767136, 0.3777201473712921, -0.045475270599126816])),
(4, array('d', [0.10334215313196182, 0.1881643384695053, 0.09297363460063934, -0.457258403301239, -0.5272660255432129, -0.0989445373415947, -0.2053477019071579, -0.1644461452960968, -0.3771175146102905, 0.21405018866062164, -0.18553146719932556, 0.011830524541437626, 0.29562288522720337, 0.07959598302841187, -0.035378433763980865, -0.11786794662475586, -0.11603366583585739, 0.3776192367076874, -0.5124108791351318, 0.03971947357058525, -0.03365595266222954, 0.023278912529349327, 0.17436474561691284, -0.06317273527383804, 0.05118614062666893, 0.4375131130218506, 0.3281322419643402, 0.036590900272130966, -0.3759073317050934, 0.22429685294628143, -0.0728025734424591, -0.10945595055818558, 0.0728464275598526, 0.014129920862615108, -0.10701996833086014, -0.2496117204427719, -0.09409723430871964, -0.11898282915353775, 0.18940524756908417, -0.3211393356323242, -0.035668935626745224, 0.41765937209129333, 0.2636736035346985, -0.01290816068649292, 0.2824321389198303, 0.021533429622650146, -0.08053319901227951, 0.11117415875196457, 0.22975310683250427, 0.06993964314460754]))
]
However, I'm not sure how to progress from this to full_u * v^t * v
See Question&Answers more detail:
os