You can take advantage of the complex
type :
# build a complex array of your cells
z = np.array([complex(c.m_x, c.m_y) for c in cells])
First solution
# mesh this array so that you will have all combinations
m, n = np.meshgrid(z, z)
# get the distance via the norm
out = abs(m-n)
Second solution
Meshing is the main idea. But numpy
is clever, so you don't have to generate m
& n
. Just compute the difference using a transposed version of z
. The mesh is done automatically :
out = abs(z[..., np.newaxis] - z)
Third solution
And if z
is directly set as a 2-dimensional array, you can use z.T
instead of the weird z[..., np.newaxis]
. So finally, your code will look like this :
z = np.array([[complex(c.m_x, c.m_y) for c in cells]]) # notice the [[ ... ]]
out = abs(z.T-z)
Example
>>> z = np.array([[0.+0.j, 2.+1.j, -1.+4.j]])
>>> abs(z.T-z)
array([[ 0. , 2.23606798, 4.12310563],
[ 2.23606798, 0. , 4.24264069],
[ 4.12310563, 4.24264069, 0. ]])
As a complement, you may want to remove duplicates afterwards, taking the upper triangle :
>>> np.triu(out)
array([[ 0. , 2.23606798, 4.12310563],
[ 0. , 0. , 4.24264069],
[ 0. , 0. , 0. ]])
Some benchmarks
>>> timeit.timeit('abs(z.T-z)', setup='import numpy as np;z = np.array([[0.+0.j, 2.+1.j, -1.+4.j]])')
4.645645342274779
>>> timeit.timeit('abs(z[..., np.newaxis] - z)', setup='import numpy as np;z = np.array([0.+0.j, 2.+1.j, -1.+4.j])')
5.049334864854522
>>> timeit.timeit('m, n = np.meshgrid(z, z); abs(m-n)', setup='import numpy as np;z = np.array([0.+0.j, 2.+1.j, -1.+4.j])')
22.489568296184686