Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
607 views
in Technique[技术] by (71.8m points)

r - Cut() error - 'breaks' are not unique

I have following dataframe:

 a         
    ID   a.1    b.1     a.2   b.2
1    1  40.00   100.00  NA    88.89
2    2  100.00  100.00  100   100.00
3    3  50.00   100.00  75    100.00
4    4  66.67   59.38   NA    59.38
5    5  37.50   100.00  NA    100.00
6    6  100.00  100.00  100   100.00

When I apply the following code to this dataframe:

 temp <- do.call(rbind,strsplit(names(df)[-1],".",fixed=TRUE))
 dup.temp <- temp[duplicated(temp[,1]),]

 res <- lapply(dup.temp[,1],function(i) {
 breaks <- c(-Inf,quantile(a[,paste(i,1,sep=".")], na.rm=T),Inf)
 cut(a[,paste(i,2,sep=".")],breaks)
 })

the cut () function gives an error:

 Error in cut.default(a[, paste(i, 2, sep = ".")], breaks) : 
 'breaks' are not unique

However, the same code works perfectly well on similar dataframe:

 varnames<-c("ID", "a.1", "b.1", "c.1", "a.2", "b.2", "c.2")

 a <-matrix (c(1,2,3,4, 5, 6, 7), 2,7)

 colnames (a)<-varnames

 df<-as.data.frame (a)


    ID  a.1  b.1  c.1  a.2  b.2  c.2
  1  1    3    5    7    2    4    6
  2  2    4    6    1    3    5    7

 res <- lapply(dup.temp[,1],function(i) {
 breaks <- c(-Inf,quantile(a[,paste(i,1,sep=".")], na.rm=T),Inf)
 cut(a[,paste(i,2,sep=".")],breaks)
 })

 res
[[1]]
[1] (-Inf,3] (-Inf,3]
Levels: (-Inf,3] (3,3.25] (3.25,3.5] (3.5,3.75] (3.75,4] (4, Inf]

[[2]]
[1] (-Inf,5] (-Inf,5]
Levels: (-Inf,5] (5,5.25] (5.25,5.5] (5.5,5.75] (5.75,6] (6, Inf]

[[3]]
[1] (5.5,7] (5.5,7]
Levels: (-Inf,1] (1,2.5] (2.5,4] (4,5.5] (5.5,7] (7, Inf]

What it the reason for this error? How can it be fixed? Thank you.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

You get this error because quantile values in your data for columns b.1, a.2 and b.2 are the same for some levels, so they can't be directly used as breaks values in function cut().

apply(a,2,quantile,na.rm=T)
       ID      a.1    b.1   a.2      b.2
0%   1.00  37.5000  59.38  75.0  59.3800
25%  2.25  42.5000 100.00  87.5  91.6675
50%  3.50  58.3350 100.00 100.0 100.0000
75%  4.75  91.6675 100.00 100.0 100.0000
100% 6.00 100.0000 100.00 100.0 100.0000

One way to solve this problem would be to put quantile() inside unique() function - so you will remove all quantile values that are not unique. This of course will make less breaking points if quantiles are not unique.

res <- lapply(dup.temp[,1],function(i) {
  breaks <- c(-Inf,unique(quantile(a[,paste(i,1,sep=".")], na.rm=T)),Inf)
  cut(a[,paste(i,2,sep=".")],breaks)
})

[[1]]
[1] <NA>        (91.7,100]  (58.3,91.7] <NA>        <NA>        (91.7,100] 
Levels: (-Inf,37.5] (37.5,42.5] (42.5,58.3] (58.3,91.7] (91.7,100] (100, Inf]

[[2]]
[1] (59.4,100]  (59.4,100]  (59.4,100]  (-Inf,59.4] (59.4,100]  (59.4,100] 
Levels: (-Inf,59.4] (59.4,100] (100, Inf]

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...