I have some data from log files and would like to group entries by a minute:
def gen(date, count=10):
while count > 0:
yield date, "event{}".format(randint(1,9)), "source{}".format(randint(1,3))
count -= 1
date += DateOffset(seconds=randint(40))
df = DataFrame.from_records(list(gen(datetime(2012,1,1,12, 30))), index='Time', columns=['Time', 'Event', 'Source'])
df:
Event Source
2012-01-01 12:30:00 event3 source1
2012-01-01 12:30:12 event2 source2
2012-01-01 12:30:12 event2 source2
2012-01-01 12:30:29 event6 source1
2012-01-01 12:30:38 event1 source1
2012-01-01 12:31:05 event4 source2
2012-01-01 12:31:38 event4 source1
2012-01-01 12:31:44 event5 source1
2012-01-01 12:31:48 event5 source2
2012-01-01 12:32:23 event6 source1
I tried these options:
df.resample('Min')
is too high level and wants to aggregate.
df.groupby(date_range(datetime(2012,1,1,12, 30), freq='Min',
periods=4))
fails with exception.
df.groupby(TimeGrouper(freq='Min'))
works fine and returns a DataFrameGroupBy
object for further processing, e.g.:
grouped = df.groupby(TimeGrouper(freq='Min'))
grouped.Source.value_counts()
2012-01-01 12:30:00 source1 1
2012-01-01 12:31:00 source2 2
source1 2
2012-01-01 12:32:00 source2 2
source1 2
2012-01-01 12:33:00 source1 1
However, the TimeGrouper
class is not documented.
What is the correct way to group by a period of time? How can I group the data by a minute AND by the Source column, e.g. groupby([TimeGrouper(freq='Min'), df.Source])
?
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…