The source code from the Fhourstones Benchmark from John Tromp uses a fascinating algorithm for testing a connect four game for a win. The algorithm uses following bitboard representation of the game:
. . . . . . . TOP
5 12 19 26 33 40 47
4 11 18 25 32 39 46
3 10 17 24 31 38 45
2 9 16 23 30 37 44
1 8 15 22 29 36 43
0 7 14 21 28 35 42 BOTTOM
There is one bitboard for the red player and one for the yellow player. 0
represents a empty cell, 1
represents a filled cell. The bitboard is stored in an unsigned 64 bit integer variable. The bits 6, 13, 20, 27, 34, 41, >= 48 have to be 0
.
The algorithm is:
// return whether 'board' includes a win
bool haswon(unsigned __int64 board)
{
unsigned __int64 y = board & (board >> 6);
if (y & (y >> 2 * 6)) // check diagonal
return true;
y = board & (board >> 7);
if (y & (y >> 2 * 7)) // check horizontal
return true;
y = board & (board >> 8);
if (y & (y >> 2 * 8)) // check / diagonal
return true;
y = board & (board >> 1);
if (y & (y >> 2)) // check vertical
return true;
return false;
}
You have to call the function for the bitboard of the player who did the last move.
I try to explain the algorithm in my answer to the question "How to determine game end, in tic-tac-toe?".
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…