After reading some document on http://spark.apache.org/docs/0.8.0/cluster-overview.html, I got some question that I want to clarify.
Take this example from Spark:
JavaSparkContext spark = new JavaSparkContext(
new SparkConf().setJars("...").setSparkHome....);
JavaRDD<String> file = spark.textFile("hdfs://...");
// step1
JavaRDD<String> words =
file.flatMap(new FlatMapFunction<String, String>() {
public Iterable<String> call(String s) {
return Arrays.asList(s.split(" "));
}
});
// step2
JavaPairRDD<String, Integer> pairs =
words.map(new PairFunction<String, String, Integer>() {
public Tuple2<String, Integer> call(String s) {
return new Tuple2<String, Integer>(s, 1);
}
});
// step3
JavaPairRDD<String, Integer> counts =
pairs.reduceByKey(new Function2<Integer, Integer>() {
public Integer call(Integer a, Integer b) {
return a + b;
}
});
counts.saveAsTextFile("hdfs://...");
So let's say I have 3 nodes cluster, and node 1 running as master, and the above driver program has been properly jared (say application-test.jar). So now I'm running this code on the master node and I believe right after the SparkContext
being created, the application-test.jar file will be copied to the worker nodes (and each worker will create a dir for that application).
So now my question:
Are step1, step2 and step3 in the example tasks that get sent over to the workers? If yes, then how does the worker execute that? Like java -cp "application-test.jar" step1
and so on?
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…