Is a statement in SQL Server ACID
?
What I mean by that
Given a single T-SQL statement, not wrapped in a BEGIN TRANSACTION
/ COMMIT TRANSACTION
, are the actions of that statement:
- Atomic: either all of its data modifications are performed, or none of them is performed.
- Consistent: When completed, a transaction must leave all data in a consistent state.
- Isolated: Modifications made by concurrent transactions must be isolated from the modifications made by any other concurrent transactions.
- Durable: After a transaction has completed, its effects are permanently in place in the system.
The reason I ask
I have a single statement in a live system that appears to be violating the rules of the query.
In effect my T-SQL statement is:
--If there are any slots available,
--then find the earliest unbooked transaction and mark it booked
UPDATE Transactions
SET Booked = 1
WHERE TransactionID = (
SELECT TOP 1 TransactionID
FROM Slots
INNER JOIN Transactions t2
ON Slots.SlotDate = t2.TransactionDate
WHERE t2.Booked = 0 --only book it if it's currently unbooked
AND Slots.Available > 0 --only book it if there's empty slots
ORDER BY t2.CreatedDate)
Note: But a simpler conceptual variant might be:
--Give away one gift, as long as we haven't given away five
UPDATE Gifts
SET GivenAway = 1
WHERE GiftID = (
SELECT TOP 1 GiftID
FROM Gifts
WHERE g2.GivenAway = 0
AND (SELECT COUNT(*) FROM Gifts g2 WHERE g2.GivenAway = 1) < 5
ORDER BY g2.GiftValue DESC
)
In both of these statements, notice that they are single statements (UPDATE...SET...WHERE
).
There are cases where the wrong transaction is being "booked"; it's actually picking a later transaction. After staring at this for 16 hours, I'm stumped. It's as though SQL Server is simply violating the rules.
I wondered what if the results of the Slots
view is changing before the update happens? What if SQL Server is not holding SHARED
locks on the transactions on that date? Is it possible that a single statement can be inconsistent?
So I decided to test it
I decided to check if the results of sub-queries, or inner operations, are inconsistent. I created a simple table with a single int
column:
CREATE TABLE CountingNumbers (
Value int PRIMARY KEY NOT NULL
)
From multiple connections, in a tight loop, I call the single T-SQL statement:
INSERT INTO CountingNumbers (Value)
SELECT ISNULL(MAX(Value), 0)+1 FROM CountingNumbers
In other words the pseudo-code is:
while (true)
{
ADOConnection.Execute(sql);
}
And within a few seconds I get:
Violation of PRIMARY KEY constraint 'PK__Counting__07D9BBC343D61337'.
Cannot insert duplicate key in object 'dbo.CountingNumbers'.
The duplicate value is (1332)
Are statements atomic?
The fact that a single statement wasn't atomic makes me wonder if single statements are atomic?
Or is there a more subtle definition of statement, that differs from (for example) what SQL Server considers a statement:
Does this fundamentally means that within the confines of a single T-SQL statement, SQL Server statements are not atomic?
And if a single statement is atomic, what accounts for the key violation?
From within a stored procedure
Rather than a remote client opening n connections, I tried it with a stored procedure:
CREATE procedure [dbo].[DoCountNumbers] AS
SET NOCOUNT ON;
DECLARE @bumpedCount int
SET @bumpedCount = 0
WHILE (@bumpedCount < 500) --safety valve
BEGIN
SET @bumpedCount = @bumpedCount+1;
PRINT 'Running bump '+CAST(@bumpedCount AS varchar(50))
INSERT INTO CountingNumbers (Value)
SELECT ISNULL(MAX(Value), 0)+1 FROM CountingNumbers
IF (@bumpedCount >= 500)
BEGIN
PRINT 'WARNING: Bumping safety limit of 500 bumps reached'
END
END
PRINT 'Done bumping process'
and opened 5 tabs in SSMS, pressed F5 in each, and watched as they too violated ACID:
Running bump 414
Msg 2627, Level 14, State 1, Procedure DoCountNumbers, Line 14
Violation of PRIMARY KEY constraint 'PK_CountingNumbers'.
Cannot insert duplicate key in object 'dbo.CountingNumbers'.
The duplicate key value is (4414).
The statement has been terminated.
So the failure is independent of ADO, ADO.net, or none of the above.
For 15 years i've been operating under the assumption that a single statement in SQL Server is consistent; and the only
What about TRANSACTION ISOLATION LEVEL xxx?
For different variants of the SQL batch to execute:
default (read committed): key violation
INSERT INTO CountingNumbers (Value)
SELECT ISNULL(MAX(Value), 0)+1 FROM CountingNumbers
default (read committed), explicit transaction: no error key violation
BEGIN TRANSACTION
INSERT INTO CountingNumbers (Value)
SELECT ISNULL(MAX(Value), 0)+1 FROM CountingNumbers
COMMIT TRANSACTION
serializable: deadlock
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
BEGIN TRANSACTION
INSERT INTO CountingNumbers (Value)
SELECT ISNULL(MAX(Value), 0)+1 FROM CountingNumbers
COMMIT TRANSACTION
SET TRANSACTION ISOLATION LEVEL READ COMMITTED
snapshot (after altering database to enable snapshot isolation): key violation
SET TRANSACTION ISOLATION LEVEL SNAPSHOT
BEGIN TRANSACTION
INSERT INTO CountingNumbers (Value)
SELECT ISNULL(MAX(Value), 0)+1 FROM CountingNumbers
COMMIT TRANSACTION
SET TRANSACTION ISOLATION LEVEL READ COMMITTED
Bonus
- Microsoft SQL Server 2008 R2 (SP2) - 10.50.4000.0 (X64)
- Default transaction isolation level (
READ COMMITTED
)
Turns out every query I've ever written is broken
This certainly changes things. Every update statement I've ever written is fundamentally broken. E.g.:
--Update the user with their last invoice date
UPDATE Users
SET LastInvoiceDate = (SELECT MAX(InvoiceDate) FROM Invoices WHERE Invoices.uid = Users.uid)
Wrong value; because another invoice could be inserted after the MAX
and before the UPDATE
. Or an example from BOL:
UPDATE Sales.SalesPerson
SET SalesYTD = SalesYTD +
(SELECT SUM(so.SubTotal)
FROM Sales.SalesOrderHeader AS so
WHERE so.OrderDate = (SELECT MAX(OrderDate)
FROM Sales.SalesOrderHeader AS so2
WHERE so2.SalesPersonID = so.SalesPersonID)
AND Sales.SalesPerson.BusinessEntityID = so.SalesPersonID
GROUP BY so.SalesPersonID);
without exclusive holdlocks, the SalesYTD
is wrong.
How have I been able to do anything all these years.
See Question&Answers more detail:
os