It can be achieved quite easily with 2 optimizers:
var_list1 = [variables from first 5 layers]
var_list2 = [the rest of variables]
train_op1 = GradientDescentOptimizer(0.00001).minimize(loss, var_list=var_list1)
train_op2 = GradientDescentOptimizer(0.0001).minimize(loss, var_list=var_list2)
train_op = tf.group(train_op1, train_op2)
One disadvantage of this implementation is that it computes tf.gradients(.) twice inside the optimizers and thus it might not be optimal in terms of execution speed. This can be mitigated by explicitly calling tf.gradients(.), splitting the list into 2 and passing corresponding gradients to both optimizers.
Related question: Holding variables constant during optimizer
EDIT: Added more efficient but longer implementation:
var_list1 = [variables from first 5 layers]
var_list2 = [the rest of variables]
opt1 = tf.train.GradientDescentOptimizer(0.00001)
opt2 = tf.train.GradientDescentOptimizer(0.0001)
grads = tf.gradients(loss, var_list1 + var_list2)
grads1 = grads[:len(var_list1)]
grads2 = grads[len(var_list1):]
tran_op1 = opt1.apply_gradients(zip(grads1, var_list1))
train_op2 = opt2.apply_gradients(zip(grads2, var_list2))
train_op = tf.group(train_op1, train_op2)
You can use tf.trainable_variables()
to get all training variables and decide to select from them.
The difference is that in the first implementation tf.gradients(.)
is called twice inside the optimizers. This may cause some redundant operations to be executed (e.g. gradients on the first layer can reuse some computations for the gradients of the following layers).
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…