Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
281 views
in Technique[技术] by (71.8m points)

python - How to set layer-wise learning rate in Tensorflow?

I am wondering if there is a way that I can use different learning rate for different layers like what is in Caffe. I am trying to modify a pre-trained model and use it for other tasks. What I want is to speed up the training for new added layers and keep the trained layers at low learning rate in order to prevent them from being distorted. for example, I have a 5-conv-layer pre-trained model. Now I add a new conv layer and fine tune it. The first 5 layers would have learning rate of 0.00001 and the last one would have 0.001. Any idea how to achieve this?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

It can be achieved quite easily with 2 optimizers:

var_list1 = [variables from first 5 layers]
var_list2 = [the rest of variables]
train_op1 = GradientDescentOptimizer(0.00001).minimize(loss, var_list=var_list1)
train_op2 = GradientDescentOptimizer(0.0001).minimize(loss, var_list=var_list2)
train_op = tf.group(train_op1, train_op2)

One disadvantage of this implementation is that it computes tf.gradients(.) twice inside the optimizers and thus it might not be optimal in terms of execution speed. This can be mitigated by explicitly calling tf.gradients(.), splitting the list into 2 and passing corresponding gradients to both optimizers.

Related question: Holding variables constant during optimizer

EDIT: Added more efficient but longer implementation:

var_list1 = [variables from first 5 layers]
var_list2 = [the rest of variables]
opt1 = tf.train.GradientDescentOptimizer(0.00001)
opt2 = tf.train.GradientDescentOptimizer(0.0001)
grads = tf.gradients(loss, var_list1 + var_list2)
grads1 = grads[:len(var_list1)]
grads2 = grads[len(var_list1):]
tran_op1 = opt1.apply_gradients(zip(grads1, var_list1))
train_op2 = opt2.apply_gradients(zip(grads2, var_list2))
train_op = tf.group(train_op1, train_op2)

You can use tf.trainable_variables() to get all training variables and decide to select from them. The difference is that in the first implementation tf.gradients(.) is called twice inside the optimizers. This may cause some redundant operations to be executed (e.g. gradients on the first layer can reuse some computations for the gradients of the following layers).


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...