Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
167 views
in Technique[技术] by (71.8m points)

c++ - How can I sort two vectors in the same way, with criteria that uses only one of the vectors?

How can I sort two vectors in the same way, with criteria that uses only one of the vectors?

For example, suppose I have two vectors of the same size:

vector<MyObject> vectorA;
vector<int> vectorB;

I then sort vectorA using some comparison function. That sorting reordered vectorA. How can I have the same reordering applied to vectorB?


One option is to create a struct:

struct ExampleStruct {
    MyObject mo;
    int i;
};

and then sort a vector that contains the contents of vectorA and vectorB zipped up into a single vector:

// vectorC[i] is vectorA[i] and vectorB[i] combined
vector<ExampleStruct> vectorC;

This doesn't seem like an ideal solution. Are there other options, especially in C++11?

Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

Finding a sort permutation

Given a std::vector<T> and a comparison for T's, we want to be able to find the permutation you would use if you were to sort the vector using this comparison.

template <typename T, typename Compare>
std::vector<std::size_t> sort_permutation(
    const std::vector<T>& vec,
    Compare& compare)
{
    std::vector<std::size_t> p(vec.size());
    std::iota(p.begin(), p.end(), 0);
    std::sort(p.begin(), p.end(),
        [&](std::size_t i, std::size_t j){ return compare(vec[i], vec[j]); });
    return p;
}

Applying a sort permutation

Given a std::vector<T> and a permutation, we want to be able to build a new std::vector<T> that is reordered according to the permutation.

template <typename T>
std::vector<T> apply_permutation(
    const std::vector<T>& vec,
    const std::vector<std::size_t>& p)
{
    std::vector<T> sorted_vec(vec.size());
    std::transform(p.begin(), p.end(), sorted_vec.begin(),
        [&](std::size_t i){ return vec[i]; });
    return sorted_vec;
}

You could of course modify apply_permutation to mutate the vector you give it rather than returning a new sorted copy. This approach is still linear time complexity and uses one bit per item in your vector. Theoretically, it's still linear space complexity; but, in practice, when sizeof(T) is large the reduction in memory usage can be dramatic. (See details)

template <typename T>
void apply_permutation_in_place(
    std::vector<T>& vec,
    const std::vector<std::size_t>& p)
{
    std::vector<bool> done(vec.size());
    for (std::size_t i = 0; i < vec.size(); ++i)
    {
        if (done[i])
        {
            continue;
        }
        done[i] = true;
        std::size_t prev_j = i;
        std::size_t j = p[i];
        while (i != j)
        {
            std::swap(vec[prev_j], vec[j]);
            done[j] = true;
            prev_j = j;
            j = p[j];
        }
    }
}

Example

vector<MyObject> vectorA;
vector<int> vectorB;

auto p = sort_permutation(vectorA,
    [](T const& a, T const& b){ /*some comparison*/ });

vectorA = apply_permutation(vectorA, p);
vectorB = apply_permutation(vectorB, p);

Resources


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...