I've used this and it works quite well.
Here's an example of how the algorithm works at a high level.
Edit: I was curious to see just how accurate this was as defined below. Here is the sqrt(2) from an official source:
(first 200 digits) 1.41421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147
and here it is using the approach I outline below with SQRT_DIG
equal to 150:
(first 200 digits) 1.41421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206086685
The first deviation occurs after 195 digits of precision. Use at your own risk if you need such a high level of precision as this.
Changing SQRT_DIG
to 1000 yielded 1570 digits of precision.
private static final BigDecimal SQRT_DIG = new BigDecimal(150);
private static final BigDecimal SQRT_PRE = new BigDecimal(10).pow(SQRT_DIG.intValue());
/**
* Private utility method used to compute the square root of a BigDecimal.
*
* @author Luciano Culacciatti
* @url http://www.codeproject.com/Tips/257031/Implementing-SqrtRoot-in-BigDecimal
*/
private static BigDecimal sqrtNewtonRaphson (BigDecimal c, BigDecimal xn, BigDecimal precision){
BigDecimal fx = xn.pow(2).add(c.negate());
BigDecimal fpx = xn.multiply(new BigDecimal(2));
BigDecimal xn1 = fx.divide(fpx,2*SQRT_DIG.intValue(),RoundingMode.HALF_DOWN);
xn1 = xn.add(xn1.negate());
BigDecimal currentSquare = xn1.pow(2);
BigDecimal currentPrecision = currentSquare.subtract(c);
currentPrecision = currentPrecision.abs();
if (currentPrecision.compareTo(precision) <= -1){
return xn1;
}
return sqrtNewtonRaphson(c, xn1, precision);
}
/**
* Uses Newton Raphson to compute the square root of a BigDecimal.
*
* @author Luciano Culacciatti
* @url http://www.codeproject.com/Tips/257031/Implementing-SqrtRoot-in-BigDecimal
*/
public static BigDecimal bigSqrt(BigDecimal c){
return sqrtNewtonRaphson(c,new BigDecimal(1),new BigDecimal(1).divide(SQRT_PRE));
}
be sure to check out barwnikk's answer. it's more concise and seemingly offers as good or better precision.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…