I am no JAVA coder so I stick with C++. Also this is not an direct answer to your question (sorry for that but I can not debug JAVA) take this as some pointers which way to go or check...
Sieves of Eratosthenes
Parallelization is possible but not with big enough speed gain. Instead I use more sieve-tabs where each one have its own sub-divisions and each table size is an common multiply of all its sub-divisors. This way you need initiate tables just once and then just check them in O(1)
Parallelization
After checking all of the sieves then I would use threads to do the obvious division testing for all of the unused divisors
Memoize
If you have active table of all found primes then divide just by primes and add all new primes found
I am using non parallel prime search which is fast enough for me ...
- You can adapt this to your parallel code ...
[Edit1] updated code
//---------------------------------------------------------------------------
int bits(DWORD p)
{
DWORD m=0x80000000; int b=32;
for (;m;m>>=1,b--)
if (p>=m) break;
return b;
}
//---------------------------------------------------------------------------
DWORD sqrt(const DWORD &x)
{
DWORD m,a;
m=(bits(x)>>1);
if (m) m=1<<m; else m=1;
for (a=0;m;m>>=1) { a|=m; if (a*a>x) a^=m; }
return a;
}
//---------------------------------------------------------------------------
List<int> primes_i32; // list of precomputed primes
const int primes_map_sz=4106301; // max size of map for speedup search for primes max(LCM(used primes per bit)) (not >>1 because SOE is periodic at double LCM size and only odd values are stored 2/2=1)
const int primes_map_N[8]={ 4106301,3905765,3585337,4026077,3386981,3460469,3340219,3974653 };
const int primes_map_i0=33; // first index of prime not used in mask
const int primes_map_p0=137; // biggest prime used in mask
BYTE primes_map[primes_map_sz]; // factors map for first i0-1 primes
bool primes_i32_alloc=false;
int isprime(int p)
{
int i,j,a,b,an,im[8]; BYTE u;
an=0;
if (!primes_i32.num) // init primes vars
{
primes_i32.allocate(1024*1024);
primes_i32.add( 2); for (i=1;i<primes_map_sz;i++) primes_map[i]=255; primes_map[0]=254;
primes_i32.add( 3); for (u=255- 1,j= 3,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add( 5); for (u=255- 2,j= 5,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add( 7); for (u=255- 4,j= 7,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add( 11); for (u=255- 8,j= 11,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add( 13); for (u=255- 16,j= 13,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add( 17); for (u=255- 32,j= 17,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add( 19); for (u=255- 64,j= 19,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add( 23); for (u=255-128,j= 23,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add( 29); for (u=255- 1,j=137,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add( 31); for (u=255- 2,j=131,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add( 37); for (u=255- 4,j=127,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add( 41); for (u=255- 8,j=113,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add( 43); for (u=255- 16,j= 83,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add( 47); for (u=255- 32,j= 61,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add( 53); for (u=255- 64,j=107,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add( 59); for (u=255-128,j=101,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add( 61); for (u=255- 1,j=103,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add( 67); for (u=255- 2,j= 67,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add( 71); for (u=255- 4,j= 37,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add( 73); for (u=255- 8,j= 41,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add( 79); for (u=255- 16,j= 43,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add( 83); for (u=255- 32,j= 47,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add( 89); for (u=255- 64,j= 53,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add( 97); for (u=255-128,j= 59,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add(101); for (u=255- 1,j= 97,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add(103); for (u=255- 2,j= 89,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add(107); for (u=255- 4,j=109,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add(109); for (u=255- 8,j= 79,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add(113); for (u=255- 16,j= 73,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add(127); for (u=255- 32,j= 71,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add(131); for (u=255- 64,j= 31,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
primes_i32.add(137); for (u=255-128,j= 29,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u;
}
if (!primes_i32_alloc)
{
if (p <=1) return 0; // ignore too small walues
if (p&1==0) return 0; // not prime if even
if (p>primes_map_p0)
{
j=p>>1;
i=j; if (i>=primes_map_N[0]) i%=primes_map_N[0]; if (!(primes_map[i]& 1)) return 0;
i=j; if (i>=primes_map_N[1]) i%=primes_map_N[1]; if (!(primes_map[i]& 2)) return 0;
i=j; if (i>=primes_map_N[2]) i%=primes_map_N[2]; if (!(primes_map[i]& 4)) return 0;
i=j; if (i>=primes_map_N[3]) i%=primes_map_N[3]; if (!(primes_map[i]& 8)) return 0;
i=j; if (i>=primes_map_N[4]) i%=primes_map_N[4]; if (!(primes_map[i]& 16)) return 0;
i=j; if (i>=primes_map_N[5]) i%=primes_map_N[5]; if (!(primes_map[i]& 32)) return 0;
i=j; if (i>=primes_map_N[6]) i%=primes_map_N[6]; if (!(primes_map[i]& 64)) return 0;
i=j; if (i>=primes_map_N[7]) i%=primes_map_N[7]; if (!(primes_map[i]&128)) return 0;
}
}
an=primes_i32[primes_i32.num-1];
if (an>=p)
{
// linear table search
if (p<127) // 31st prime
{
if (an>=p) for (i=0;i<primes_i32.num;i++)
{
a=primes_i32[i];
if (a==p) return 1;
if (a> p) return 0;
}
}
// approximation table search
else{
for (j=1,i=primes_i32.num-1;j<i;j<<=1); j>>=1; if (!j) j=1;
for (i=0;j;j>>=1)
{
i|=j;
if (i>=primes_i32.num) { i-=j; continue; }
a=primes_i32[i];
if (a==p) return 1;
if (a> p) i-=j;
}
return 0;
}
}
a=an; a+=2;
for (j=a>>1,i=0;i<8;i++) im[i]=j%primes_map_N[i];
an=(1<<((bits(p)>>1)+1))-1; if (an<=0) an=1;
an=an+an;
for (;a<=p;a+=2)
{
for (j=1,i=0;i<8;i++,j<<=1) // check if map is set
if (!(primes_map[im[i]]&j)) { j=-1; break; } // if not dont bother with division
for (i=0;i<8;i++) { im[i]++; if (im[i]>=primes_map_N[i]) im[i]-=primes_map_N[i]; }
if (j<0) continue;
for (i=primes_map_i0;i<primes_i32.num;i++)
{
b=primes_i32[i];
if (b>an) break;
if ((a%b)==0) { i=-1; break; }
}
if (i<0) continue;
primes_i32.add(a);
if (a==p) return 1;
if (a> p) return 0;
}
return 0;
}
//---------------------------------------------------------------------------
void getprimes(int p) // compute and allocate primes up to p
{
if (!primes_i32.num) isprime(3);
int p0=primes_i32[primes_i32.num-1]; // biggest prime computed yet
if (p>p0+10000) // if too big difference use sieves to fast precompute
{
// T((0.3516+0.5756*log10(n))*n) -> O(n.log(n))
// sieves N/16 bytes p=100 000 000 t=1903.031 ms
// ------------------------------
// 0 1 2 3 4 5 6 7 bit
// ------------------------------
// 1 3 5 7 9 11 13 15 +-> +2
// 17 19 21 23 25 27 29 31 |
// 33 35 37 39 41 43 45 47 V +16
// ------------------------------
int N=(p|15),M=(N>>4); // store only odd values 1,3,5,7,... each bit ...
char *m=new char[M+1]; // m[i] -> is 1+i+i prime? (factors map)
int i,j,k,n;
// init sieves
m[0]=254; for (i=1;i<=M;i++) m[i]=255;
for(n=sqrt(p),i=1;i<=n;)
{
int a=m[i>>4];
if (int(a& 1)!=0) for(k=i+i,j=i+k;j<=N;j+=k) m[j>>4]&=255-(1<<((j>>1)&7)); i+=2;
if (int(a& 2)!=0) for(k=i+i,j=i+k;j<=N;j+=k) m[j>>4]&=255-(1<<((j>>1)&7)); i+=2;
if (int(a& 4)!=0) for(k=i+i,j=i+k;j<=N;j+=k) m[j>>4]&=255-(1<<((j>>1)&7)); i+=2;
if (int(a& 8)!=0) for(k=i+i,j=i+k;j<=N;j+=k) m[j>>4]&=255-(1<<((j>>1)&7)); i+=2;
if (int(a& 16)!=0) for(k=i+i,j=i+k;j<=N;j+=k) m[j>>4]&=255-(1<<((j>>1)&7)); i+=2;
if (int(a& 32)!=0) for(k=i+i,j=i+k;j<=N;j+=k) m[j>>4]&=255-(1<<((j>>1)&7)); i+=2;
if (int(a& 64)!=0) for(k=i+i,j=i+k;j<=N;j+=k) m[j>>4]&=255-(1<<((j>>1)&7)); i+=2;
if (int(a&128)!=0) for(k=i+i,j=i+k;j<=N;j+=k) m[j>>4]&=255-(1<<((j>>1)&7)); i+=2;
}
// compute primes
i=p0&0xFFFFFFF1; k=m[i>>4]; // start after last found prime in list
if ((int(k& 1)!=0)&&(i>p0)) primes_i32.add(i); i+=2;
if ((int(k& 2)!=0)&&(i>p0)) primes_i32.add(i); i+=2;
if ((int(k& 4)!=0)&&(i>p0)) primes_i32.add(i); i+=2;
if ((int(k& 8)!=0)&&(i>p0)) primes_i32.add(i); i+=2;
if ((int(k& 16)!=0)&&(i>p0)) primes_i32.add(i); i+=2;
if ((int(k& 32)!=0)&&(i>p0)) primes_i32.add(i); i+=2;
if ((int(k& 64)!=0)&&(i>p0)) primes_i32.add(i); i+=2;
if ((int(k&128)!=0)&&(i>p0)) primes_i32.add(i); i+=2;
for(j=i>>4