If you accept that your column names start from Column0 (not Column1),
you can call read_csv with sep=';' and a suitable prefix:
result = pd.read_csv('Input.csv', sep=';', header=None, prefix='Column', dtype='str')
Note that I passed dtype='str' because some columns of your input have leading
zeroes which otherwise would be stripped.
This solution works regardless of the number of input columns, but the downside is
that now all columns are of object type.
Maybe you should convert some columns to other types.
The result is:
Column0 Column1 Column2 Column3 Column4 Column5 Column6 Column7 Column8 Column9
0 GS3 724330300294409 50 BRABT 00147 44504942 01 669063000 25600 0
1 GS3 724330300294409 50 BRABT 00147 44504943 01 669063000 25600 0
2 GS3 724330300294409 50 BRABT 00147 44504944 01 669063000 25600 00004
Other option, to create column names just as you wish (starting from
Column1), but possible only if you know the number of columns, is:
# Create the list of column names
names = [ f'Column{i}' for i in range(1, 11) ]
# Read passing the above column names
result = pd.read_csv('Input.csv', sep=';', names=names, dtype='str')
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…