In rebuttal to this answer, if to_sql()
was to fall victim to the issue described in
SQL Server does not finish execution of a large batch of SQL statements
then it would have to be constructing large anonymous code blocks of the form
-- Note no SET NOCOUNT ON;
INSERT INTO gh_pyodbc_262 (id, txt) VALUES (0, 'row0');
INSERT INTO gh_pyodbc_262 (id, txt) VALUES (1, 'row1');
INSERT INTO gh_pyodbc_262 (id, txt) VALUES (2, 'row2');
…
and that is not what to_sql()
is doing. If it were, then it would start to fail well below 1_000 rows, at least on SQL Server 2017 Express Edition:
import pandas as pd
import pyodbc
import sqlalchemy as sa
print(pyodbc.version) # 4.0.30
table_name = "gh_pyodbc_262"
num_rows = 400
print(f" num_rows: {num_rows}") # 400
cnxn = pyodbc.connect("DSN=mssqlLocal64", autocommit=True)
crsr = cnxn.cursor()
crsr.execute(f"TRUNCATE TABLE {table_name}")
sql = "".join(
[
f"INSERT INTO {table_name} ([id], [txt]) VALUES ({i}, 'row{i}');"
for i in range(num_rows)
]
)
crsr.execute(sql)
row_count = crsr.execute(f"SELECT COUNT(*) FROM {table_name}").fetchval()
print(f"row_count: {row_count}") # 316
Using to_sql()
for that same operation works
import pandas as pd
import pyodbc
import sqlalchemy as sa
print(pyodbc.version) # 4.0.30
table_name = "gh_pyodbc_262"
num_rows = 400
print(f" num_rows: {num_rows}") # 400
df = pd.DataFrame(
[(i, f"row{i}") for i in range(num_rows)], columns=["id", "txt"]
)
engine = sa.create_engine(
"mssql+pyodbc://@mssqlLocal64", fast_executemany=True
)
df.to_sql(
table_name,
engine,
index=False,
if_exists="replace",
)
with engine.connect() as conn:
row_count = conn.execute(
sa.text(f"SELECT COUNT(*) FROM {table_name}")
).scalar()
print(f"row_count: {row_count}") # 400
and indeed will work for thousands and even millions of rows. (I did a successful test with 5_000_000 rows.)
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…