Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
323 views
in Technique[技术] by (71.8m points)

python - How to get a normal distribution within a range in numpy?


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

The parametrization of truncnorm is complicated, so here is a function that translates the parametrization to something more intuitive:

from scipy.stats import truncnorm

def get_truncated_normal(mean=0, sd=1, low=0, upp=10):
    return truncnorm(
        (low - mean) / sd, (upp - mean) / sd, loc=mean, scale=sd)


How to use it?

  1. Instance the generator with the parameters: mean, standard deviation, and truncation range:

    >>> X = get_truncated_normal(mean=8, sd=2, low=1, upp=10)
    
  2. Then, you can use X to generate a value:

    >>> X.rvs()
    6.0491227353928894
    
  3. Or, a numpy array with N generated values:

    >>> X.rvs(10)
    array([ 7.70231607,  6.7005871 ,  7.15203887,  6.06768994,  7.25153472,
            5.41384242,  7.75200702,  5.5725888 ,  7.38512757,  7.47567455])
    

A Visual Example

Here is the plot of three different truncated normal distributions:

X1 = get_truncated_normal(mean=2, sd=1, low=1, upp=10)
X2 = get_truncated_normal(mean=5.5, sd=1, low=1, upp=10)
X3 = get_truncated_normal(mean=8, sd=1, low=1, upp=10)

import matplotlib.pyplot as plt
fig, ax = plt.subplots(3, sharex=True)
ax[0].hist(X1.rvs(10000), normed=True)
ax[1].hist(X2.rvs(10000), normed=True)
ax[2].hist(X3.rvs(10000), normed=True)
plt.show()

enter image description here


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...