The parametrization of truncnorm
is complicated, so here is a function that translates the parametrization to something more intuitive:
from scipy.stats import truncnorm
def get_truncated_normal(mean=0, sd=1, low=0, upp=10):
return truncnorm(
(low - mean) / sd, (upp - mean) / sd, loc=mean, scale=sd)
How to use it?
Instance the generator with the parameters: mean, standard deviation, and truncation range:
>>> X = get_truncated_normal(mean=8, sd=2, low=1, upp=10)
Then, you can use X to generate a value:
>>> X.rvs()
6.0491227353928894
Or, a numpy array with N generated values:
>>> X.rvs(10)
array([ 7.70231607, 6.7005871 , 7.15203887, 6.06768994, 7.25153472,
5.41384242, 7.75200702, 5.5725888 , 7.38512757, 7.47567455])
A Visual Example
Here is the plot of three different truncated normal distributions:
X1 = get_truncated_normal(mean=2, sd=1, low=1, upp=10)
X2 = get_truncated_normal(mean=5.5, sd=1, low=1, upp=10)
X3 = get_truncated_normal(mean=8, sd=1, low=1, upp=10)
import matplotlib.pyplot as plt
fig, ax = plt.subplots(3, sharex=True)
ax[0].hist(X1.rvs(10000), normed=True)
ax[1].hist(X2.rvs(10000), normed=True)
ax[2].hist(X3.rvs(10000), normed=True)
plt.show()
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…